skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duan, Defang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract The current pressing challenge in the field of superconducting hydride research is to lower the stable pressure of such materials for practical applications. Molecular hydrides are usually stable under moderate pressure, but the underlying metallization mechanism remains elusive. Here, the important role of chemical interactions in governing the structures and properties of molecular hydrides is demonstrated. A new mechanism is proposed for obtaining high‐temperature and even room‐temperature superconductivity in molecular hydrides and report that the ternary hydride NaKH12hostsTcvalues up to 245 K at moderate pressure of 60 GPa. Both the excellent stability and superconductivity of NaKH12originate from the fact that the localized electrons in the interstitial region of the metal lattice occupying the crystal orbitals well matched with the hydrogen lattice and forming chemical templates to assist the assembly of H2units. These localized electrons weaken the H─H covalent bonds and improve the charge connectivity between the H2units, ensuring the strong coupling between electrons and hydrogen‐dominated optical phonons. The theory provides a key perspective for understanding the superconductivity of molecular hydrides with various structural motifs, opening the door to obtaining high‐temperature superconductors from molecular hydrides at moderate pressures. 
    more » « less